FREXP

NAME
SYNOPSIS
DESCRIPTION
RETURN VALUE
ERRORS
ATTRIBUTES
CONFORMING TO
EXAMPLE
SEE ALSO
COLOPHON

NAME

frexp, frexpf, frexpl − convert floating-point number to fractional and integral components

SYNOPSIS

#include <math.h>

double frexp(double x, int *exp);
float frexpf(float
x, int *exp);
long double frexpl(long double
x, int *exp);

Link with −lm.

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

frexpf(), frexpl():

_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L;
or cc -std=c99

DESCRIPTION

The frexp() function is used to split the number x into a normalized fraction and an exponent which is stored in exp.

RETURN VALUE

The frexp() function returns the normalized fraction. If the argument x is not zero, the normalized fraction is x times a power of two, and its absolute value is always in the range 1/2 (inclusive) to 1 (exclusive), that is, [0.5,1).

If x is zero, then the normalized fraction is zero and zero is stored in exp.

If x is a NaN, a NaN is returned, and the value of *exp is unspecified.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is returned, and the value of *exp is unspecified.

ERRORS

No errors occur.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

Image grohtml-178771.png

CONFORMING TO

C99, POSIX.1-2001. The variant returning double also conforms to SVr4, 4.3BSD, C89.

EXAMPLE

The program below produces results such as the following:

$ ./a.out 2560
frexp(2560, &e) = 0.625: 0.625 * 2^12 = 2560
$ ./a.out −4
frexp(−4, &e) = −0.5: −0.5 * 2^3 = −4

Program source
#include <math.h>
#include <float.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
double x, r;
int exp;

x = strtod(argv[1], NULL);
r = frexp(x, &exp);

printf("frexp(%g, &e) = %g: %g * %d^%d = %g\n",
x, r, r, FLT_RADIX, exp, x);
exit(EXIT_SUCCESS);
}

SEE ALSO

ldexp(3), modf(3)

COLOPHON

This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man−pages/.