The Resource Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart
Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart
Resource Information
The item Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
 Extent
 1 online resource.
 Contents

 Stability of PortHamiltonian Systems
 Inhomogeneous Abstract Differential Equations and Stabilization
 Boundary Control Systems
 Transfer Functions
 Wellposedness
 Introduction
 State Space Representation
 Controllability of FiniteDimensional Systems
 Stabilizability of FiniteDimensional Systems
 Strongly Continuous Semigroups
 Contraction and Unitary Semigroups
 Homogeneous PortHamiltonian Systems
 Stability
 Isbn
 9783034803984
 Label
 Linear portHamiltonian systems on infinitedimensional spaces
 Title
 Linear portHamiltonian systems on infinitedimensional spaces
 Statement of responsibility
 Birgit Jacob, Hans J. Zwart
 Subject

 Differential equations, partial.
 Dynamical Systems and Ergodic Theory.
 Hamiltonian systems
 Hamiltonian systems
 Hamiltonian systems
 Mathematics
 Mathematics.
 Operator theory
 Operator theory
 Operator theory
 Operator theory.
 Partial Differential Equations.
 System analysis
 System analysis
 System analysis
 Systems theory.
 Differentiable dynamical systems.
 Language
 eng
 Summary
 Annotation
 Cataloging source
 GW5XE
 http://library.link/vocab/creatorName
 Jacob, Birgit
 Dewey number
 515/.39
 Index
 index present
 LC call number
 QA614.83
 LC item number
 .J33 2012
 Literary form
 non fiction
 Nature of contents

 dictionaries
 bibliography
 http://library.link/vocab/relatedWorkOrContributorName
 Zwart, H. J.
 Series statement
 Operator theory, advances and applications
 Series volume
 v. 223
 http://library.link/vocab/subjectName

 Hamiltonian systems
 Operator theory
 System analysis
 Mathematics
 Hamiltonian systems
 Operator theory
 System analysis
 Summary expansion
 This book provides a selfcontained introduction to the theory of infinitedimensional systems theory and its applications to portHamiltonian systems. The textbook starts with elementary known results, thenprogresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinitedimensional portHamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for wellposedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many workedout examples
 Label
 Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart
 Antecedent source
 unknown
 Bibliography note
 Includes bibliographical references and index
 Carrier category
 online resource
 Carrier category code

 cr
 Carrier MARC source
 rdacarrier
 Color
 multicolored
 Content category
 text
 Content type code

 txt
 Content type MARC source
 rdacontent
 Contents

 Stability of PortHamiltonian Systems
 Inhomogeneous Abstract Differential Equations and Stabilization
 Boundary Control Systems
 Transfer Functions
 Wellposedness
 Introduction
 State Space Representation
 Controllability of FiniteDimensional Systems
 Stabilizability of FiniteDimensional Systems
 Strongly Continuous Semigroups
 Contraction and Unitary Semigroups
 Homogeneous PortHamiltonian Systems
 Stability
 Control code
 796783672
 Dimensions
 unknown
 Extent
 1 online resource.
 File format
 unknown
 Form of item
 online
 Isbn
 9783034803984
 Level of compression
 unknown
 Media category
 computer
 Media MARC source
 rdamedia
 Media type code

 c
 Other control number
 10.1007/9783034803991
 Quality assurance targets
 not applicable
 Reformatting quality
 unknown
 Sound
 unknown sound
 Specific material designation
 remote
 System control number
 (OCoLC)796783672
 Label
 Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart
 Antecedent source
 unknown
 Bibliography note
 Includes bibliographical references and index
 Carrier category
 online resource
 Carrier category code

 cr
 Carrier MARC source
 rdacarrier
 Color
 multicolored
 Content category
 text
 Content type code

 txt
 Content type MARC source
 rdacontent
 Contents

 Stability of PortHamiltonian Systems
 Inhomogeneous Abstract Differential Equations and Stabilization
 Boundary Control Systems
 Transfer Functions
 Wellposedness
 Introduction
 State Space Representation
 Controllability of FiniteDimensional Systems
 Stabilizability of FiniteDimensional Systems
 Strongly Continuous Semigroups
 Contraction and Unitary Semigroups
 Homogeneous PortHamiltonian Systems
 Stability
 Control code
 796783672
 Dimensions
 unknown
 Extent
 1 online resource.
 File format
 unknown
 Form of item
 online
 Isbn
 9783034803984
 Level of compression
 unknown
 Media category
 computer
 Media MARC source
 rdamedia
 Media type code

 c
 Other control number
 10.1007/9783034803991
 Quality assurance targets
 not applicable
 Reformatting quality
 unknown
 Sound
 unknown sound
 Specific material designation
 remote
 System control number
 (OCoLC)796783672
Subject
 Differential equations, partial.
 Dynamical Systems and Ergodic Theory.
 Hamiltonian systems
 Hamiltonian systems
 Hamiltonian systems
 Mathematics
 Mathematics.
 Operator theory
 Operator theory
 Operator theory
 Operator theory.
 Partial Differential Equations.
 System analysis
 System analysis
 System analysis
 Systems theory.
 Differentiable dynamical systems.
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.library.missouri.edu/portal/LinearportHamiltoniansystemson/5U7Ncr2qK90/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/LinearportHamiltoniansystemson/5U7Ncr2qK90/">Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data  Experimental
Data Citation of the Item Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.library.missouri.edu/portal/LinearportHamiltoniansystemson/5U7Ncr2qK90/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/LinearportHamiltoniansystemson/5U7Ncr2qK90/">Linear portHamiltonian systems on infinitedimensional spaces, Birgit Jacob, Hans J. Zwart</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>